Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins
نویسندگان
چکیده
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.
منابع مشابه
Cdc48 and Ubx1 participate in a pathway associated with the inner nuclear membrane that governs Asi1 degradation.
The nuclear envelope is a barrier comprising outer and inner membranes that separate the cytoplasm from the nucleoplasm. The two membranes have different physical characteristics and protein compositions. The processes governing the stability of inner nuclear membrane (INM) proteins are not well characterized. In Saccharomyces cerevisiae, the INM Asi1-Asi3 complex, principally composed of integ...
متن کاملMembrane-associated Ubiquitin Ligase Complex Containing gp78 Mediates Sterol-accelerated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase*
The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin l...
متن کاملMembrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways.
The yeast Doa10 ubiquitin (Ub) ligase resides in the endoplasmic reticulum (ER)/nuclear envelope (NE), where it functions in ER-associated degradation (ERAD). Doa10 substrates include non-ER proteins such as the transcription factor Mat alpha2. Here, we expand the range of Doa10 substrates to include a defective kinetochore component, a mutant NE membrane protein, and a substrate-regulated huma...
متن کاملRoad to ruin: targeting proteins for degradation in the endoplasmic reticulum.
Some nascent proteins that fold within the endoplasmic reticulum (ER) never reach their native state. Misfolded proteins are removed from the folding machinery, dislocated from the ER into the cytosol, and degraded in a series of pathways collectively referred to as ER-associated degradation (ERAD). Distinct ERAD pathways centered on different E3 ubiquitin ligases survey the range of potential ...
متن کاملDistinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria.
Gp78 (also known as AMFR), an endoplasmic-reticulum (ER)-associated protein degradation (ERAD) E3 ubiquitin ligase, localizes to mitochondria-associated ER and targets the mitofusin (Mfn1 and Mfn2) mitochondrial fusion proteins for degradation. Gp78 is also the cell surface receptor for autocrine motility factor (AMF), which prevents Gp78-dependent mitofusin degradation. Gp78 ubiquitin ligase a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 126 شماره
صفحات -
تاریخ انتشار 2006